skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krieger, N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a study of the inelasticity distribution in the scattering of neutrinos of energy 80–560 GeV off nucleons. Using atmospheric muon neutrinos detected in IceCube’s sub-array DeepCore during 2012–2021, we fit the observed inelasticity in the data to a parameterized expectation and extract the values that describe it best. Finally, we compare the results to predictions from various combinations of perturbative QCD calculations and atmospheric neutrino flux models. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract The nature of dark matter remains unresolved in fundamental physics. Weakly Interacting Massive Particles (WIMPs), which could explain the nature of dark matter, can be captured by celestial bodies like the Sun or Earth, leading to enhanced self-annihilation into Standard Model particles including neutrinos detectable by neutrino telescopes such as the IceCube Neutrino Observatory. This article presents a search for muon neutrinos from the center of the Earth performed with 10 years of IceCube data using a track-like event selection. We considered a number of WIMP annihilation channels ($$\chi \chi \rightarrow \tau ^+\tau ^-$$ χ χ τ + τ - /$$W^+W^-$$ W + W - /$$b\bar{b}$$ b b ¯ ) and masses ranging from 10 GeV to 10 TeV. No significant excess over background due to a dark matter signal was found while the most significant result corresponds to the annihilation channel$$\chi \chi \rightarrow b\bar{b}$$ χ χ b b ¯ for the mass$$m_{\chi }=250$$ m χ = 250  GeV with a post-trial significance of$$1.06\sigma $$ 1.06 σ . Our results are competitive with previous such searches and direct detection experiments. Our upper limits on the spin-independent WIMP scattering are world-leading among neutrino telescopes for WIMP masses$$m_{\chi }>100$$ m χ > 100  GeV. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Abstract We report a search for high-energy astrophysical neutrino multiplets, detections of multiple neutrino clusters in the same direction within 30 days, based on an analysis of 11.4 yr of IceCube data. A new search method optimized for transient neutrino emission with a monthly timescale is employed, providing a higher sensitivity to neutrino fluxes. This result is sensitive to neutrino transient emission, reaching per-flavor flux of approximately 1 0 10 erg cm 2 s 1 from the Northern Sky in the energy rangeE ≳ 50 TeV. The number of doublets and triplets identified in this search is compatible with the atmospheric background hypothesis, which leads us to set limits on the nature of neutrino transient sources with emission timescales of one month. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  4. Abstract We analyzed the 7.92 × 1011cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from 2011 May 13, when the fully constructed experiment started to take data, to 2023 May 12. This data set provides an up-to-date cosmic-ray arrival direction distribution in the Southern Hemisphere with unprecedented statistical accuracy covering more than a full period length of a solar cycle. Improvements in Monte Carlo event simulation and better handling of year-to-year differences in data processing significantly reduce systematic uncertainties below the level of statistical fluctuations compared to the previously published results. We confirm the observation of a change in the angular structure of the cosmic-ray anisotropy between 10 TeV and 1 PeV, more specifically in the 100–300 TeV energy range. For the first time, we analyzed the angular power spectrum at different energies. The observed variations of the power spectra with energy suggest relatively reduced large-scale features at high energy compared to those of medium and small scales. The large volume of data enhances the statistical significance at higher energies, up to the PeV scale, and smaller angular scales, down to approximately 6° compared to previous findings. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  5. Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of  ℒ = 2 × 1034cm-2s-1was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of  ℒ = 2 × 1034cm-2s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector. 
    more » « less